Natural RNA circles function as efficient microRNA sponges
该论文提出了一种全新的CLIP方法,称为enhanced CLIP (eCLIP)。该方法为RBPs在全基因组范围内的maps提供了一个更加强大,标准化的框架。显著的降低了测序过程中所需要扩增的次数,并且极大地提高了RBPs文库可读百分比的成功率。此外,eCLIP还改善了配对input controls的发现auehentic位点的信噪比。
该论文提出了一种全新的CLIP方法,称为enhanced CLIP (eCLIP)。该方法为RBPs在全基因组范围内的maps提供了一个更加强大,标准化的框架。显著的降低了测序过程中所需要扩增的次数,并且极大地提高了RBPs文库可读百分比的成功率。此外,eCLIP还改善了配对input controls的发现auehentic位点的信噪比。
通过对小鼠睾丸上皮绒毛和腺窝干细胞进行RNA-seq和CHIP-seq研究,发现基因的二价启动子在干细胞和组织特化细胞中的不同分布情况,以及组蛋白修饰marker在不同细胞中对基因表达调控的差异。
研究者们利用TCGA、ICGC和其他已发表的高通量测序数据(图1),绘制了人类肿瘤的变异图谱。图谱信息包括以下几类癌症功能事件(Cancer Functional Events, CFE):1、表现出定向选择特征的高突变率的癌症基因;2、反复发生的拷贝数差异变化;3、启动子区的超甲基化CpG位点。通过分析超过11000名病人的肿瘤样本信息,研究者们确定了1699种癌症特异CFE,并进一步合并为1273种泛癌症CFE。
慢性阻塞性肺部疾病(Chronic obstructive pulmonary disease, COPD)是一种复杂,削弱肺部功能的疾病,主要临床和病理表现包括从气道炎症(慢性支气管炎),肺组织破坏(肺气肿)小气道重塑等(1,2)。COPD的发病机制至今仍然不明确,但是它涉及到肺部对香烟烟雾(cigarette smoke, CS)的异常炎症和细胞反应失调(1)。目前研究表明吸烟和遗传是COPD最大的危险因素(3)。本文作者之前通过对人类全基因组进行全基因组关联分析(genome-wide association studies, GWAS)确定IRP2(也称为IREB2)是COPD的主要候选基因(4-6),此后作者证明IRP2蛋白在COPD患者的肺部含量增加(4)。已有的研究表明IRP2基因位于人类15q25染色体上,该染色体上还包括编码烟碱乙酰胆碱受体的几个部件的基因。此外 GWAS分析表明15q25还与肺癌,外周动脉疾病和尼古丁成瘾相关(7-10)。铁调节蛋白(The iron-regulatory proteins, IRPs)IRP1和IRP2尤其是IRP2负责调节哺乳动物体内细胞铁离子的平衡(11)。IRPs在十二指肠,脊髓和中枢神经扮演非常重要的生理角色,同时IRPs也可能是肺动脉高压和神经性病变等疾病发病原因(12-15)。在细胞内铁耗尽的情况下,IRPs通过与位于mRNA上铁体内平衡基因的铁反应元件(iron-response elements, IREs)结合,导致其翻译被抑制从而降低铁的储存并同时增加铁摄取(12,15)。但是IRP2在肺部的生理功能以及IRP2的mRNA转录还不是很清楚,同时IRP2在肺部暴露在香烟烟雾中COPD发病的响应机制也不是很明确。因此,作者试图通过将COPD实验中小鼠模型和人COPD数据整合,阐述由香烟烟雾引起的COPD中IRP2的功能。
2016年9月26日至27日,David MJ Lilley教授访问生命之美,并于26日上午在公司会议室进行了题为“Structure and Mechanism of a Eukaryotic Holliday Junction-Resolving Enzyme”的学术报告。公司生产技术部、科学部及其他部门成员参加了此次的报告会。
受到RBA结合蛋白控制的可变剪接过程可能影响大部分基因的表达。近年来越来越多的实验表明,可变剪接的失调可能以多种方式影响癌症的发生和发展。癌症特异性的可变剪接具有显著的诊断价值,是极有价值的癌症标记,也是潜在的药物靶标。目前科学家们已发现了一些具有可变剪接的癌症相关基因,但癌症中可变剪接的调控网络还有待细致发掘。
1. 神经干细胞具有自我更新能力,能够分化产生神经组织中不同细胞类型的细胞,它的功能失调与许多神经退行性疾病的发生和发展密切相关。
2. 成体神经干细胞数量稀少,所处环境复杂,使得在体识别、解析成体神经干细胞的分子特征及示踪成体干细胞的分化谱系面临巨大的挑战。
3.近年来,单细胞转录组测序分析技术有很大的发展。
一种罕见的多能造血干细胞群体(HSCs)需要连续生产百万成熟血细胞,同时保持不同谱系之间的正确平衡。在造血层次结构的顶点所在的最原始的长期重建造血干细胞(LT-HSCs)。LT-HSCs可以进行三种类型的细胞分裂:(1)重建对称细胞分裂产生补充LT-HSC库中的两个LT-HSC的子代细胞; (2)对称分裂来补充生产短期重建造血干细胞(STHSCs)和多能祖细胞(MPP的);及(3)不对称分裂,其中一个子细胞仍然是干细胞,其他的功能发生改变。
在骨髓(BM)中造血干细胞的能力会随着年龄增加而显著下降。相应的在老年人中骨髓性疾病例如:白血病,获得性免疫系统功能降低和贫血病的发病率显著增加。目前干细胞衰老主要有两个模型:1,特定表型的多个HSCs克隆共存,但是他们的相对频率会随年龄的变化而改变;2,所有的造血干细胞经历与年龄感官潜在的协同变化。尽管对HSCs功能的随着年龄增加而下降进行了广泛的研究,但是潜在的HSCs衰老的分子机制仍然不清楚。
Pre-mRNA的转录和剪切过程由两个不同的大分子复合物完成,RNA聚合酶II和剪接体。早期研究已经表明,新生RNA上能同时发生剪接行为,那么在新生RNA上发生的剪接过程,Pol II和剪接体之间的距离是多近是从未有人报道的。
文章运用高分辨率质谱技术和生化方法鉴定并验证了一种新的组蛋白修饰-三羟基丁酰化修饰,使用RNA-seq 和CHIP-seq 等技术对这种新的组蛋白修饰的功能进行了探索,发现一种新的组蛋白修饰的表观遗传调控方式,并发现它对基因的表达有重要的代谢调控作用。